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Changes for the better

• Review of factor graphs for optimization and inference, and the 
min-sum Belief Propagation (BP) algorithm

• Gravel and Elser’s “Divide & Concur” algorithm interpreted as a 
message-passing algorithm

• Decoders for Low-Density Parity Check (LDPC) Codes
– Divide & Concur Decoder
– “Difference-Map Belief Propagation” (DMBP) Decoder

• Simulation Results
– DMBP Decoder significantly improves error-floor performance 

compared with standard BP decoders, with similar complexity!

Outline
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Changes for the better
COMPANY CONFIDENTIAL

• Channel Coding:  Data is corrupted by a noisy channel.        
What is the most probable version of the original data?

• Computer Vision:  A camera captures an ambiguous scene.   
What is the most probable interpretation of the scene?

• Physics:  An atomic-scale energy function is given for a molecule 
or crystal. What is the most probable configuration?

• Optimization:  We are given a problem with constraints and 
costs. What is the lowest cost configuration consistent with the 
constraints?

• Equivalence of probabilistic inference and optimization problems:

Probabilistic Inference and Optimization Problems

bs =
∏

i

bi(xi) (13)

GBethe =
∑

a

∑

Xa

ba(Xa) log

(

ba(Xa)

fa(Xa)

)

+
∑

i

(1 − di)
∑

xi

bi log bi(xi) (14)

probability(X) ∝ e−cost(X) (15)
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Representing Costs (or Probabilities) in a Factor Graph

• We assume that the overall cost is the sum of M local costs

• We represent local cost functions with squares (called “factor 
nodes”), connected to the circles representing variable nodes 
involved in the local cost function. 

bs =
∏

i

bi(xi) (13)

GBethe =
∑

a

∑

Xa

ba(Xa) log

(

ba(Xa)

fa(Xa)

)

+
∑

i

(1 − di)
∑

xi

bi log bi(xi) (14)

probability(X) ∝ e−cost(X) (15)

Cost =
M
∑

a=1

Ca(Xa) (16)

Cost = Ca(x1, x2, x3) + Cb(x2, x4) + Cc(x3, x4) (17)
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Example
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Error-correcting Codes (Tanner, 1981)

Goal: find most probable code-word

Parity Checks

Unknown Transmitted Bits

Observed Symbols

+ + +
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Overall Structure of Message-Passing Algorithms

1. Initialize messages from variable nodes to factor nodes.
2. Update messages from factors to variables.
3. Update beliefs.
4. Threshold beliefs, and check for termination.
5. Update messages from variables to factors, and go to step 2.

1 2

3

a c

4b
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Overall Structure of Message-Passing Algorithms

1. Initialize messages from variables to factor nodes.
2. Update messages from factors to variables.
3. Update beliefs.
4. Threshold beliefs, and check for termination.
5. Update messages from variables to factors, and go to step 2.
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Overall Structure of Message-Passing Algorithms

1. Initialize messages from variable nodes to factor nodes.
2. Update messages from factors to variables.
3. Update beliefs.
4. Threshold beliefs, and check for termination.
5. Update messages from variables to factors, and go to step 2.
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Overall Structure of Message-Passing Algorithms

1. Initialize messages from variable nodes to factor nodes.
2. Update messages from factors to variables.
3. Update beliefs.
4. Threshold beliefs, and check for termination.
5. Update messages from variables to factors, and go to step 2.
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Belief Propagation Belief Update Rules

i

“belief”         “messages”

bs =
∏

i

bi(xi) (13)

GBethe =
∑

a

∑

Xa

ba(Xa) log

(

ba(Xa)

fa(Xa)

)

+
∑

i

(1 − di)
∑

xi

bi log bi(xi) (14)

probability(X) ∝ e−cost(X) (15)

Cost =
M
∑

a=1

Ca(Xa) (16)

Cost = Ca(x1, x2, x3) + Cb(x2, x4) + Cc(x3, x4) (17)

21000 (18)

bi(xi) =
∑

a∈N(i)

ma→i(xi) (19)

ca→i(xi) = min
xj ,xk

[Ca(xi, xj , xk) + cj→a(xj) + ck→a(xk)] (20)

ca→i(xi) = min
X\xi



Ca(Xa) +
∑

j∈N(a)\i

cj→a(xj)



 (21)

ma→i(xi) = max
X\xi



e−Ca(Xa)
∏

j∈N(a)\i

mj→a(xj)



 (22)

ci→a(xi) =
∑

b∈N(i)\a

cb→i(xi) = Bi(xi) − ca→i(xi) (23)

2
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Belief Propagation Message Update Rules 

i

bs =
∏

i

bi(xi) (13)

GBethe =
∑
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xj ,xk
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X\xi



Ca(Xa) +
∑

j∈N(a)\i

cj→a(xj)



 (21)

ma→i(xi) = max
X\xi



e−Ca(Xa)
∏

j∈N(a)\i

mj→a(xj)



 (22)

mi→a(xi) =
∑

b∈N(i)\a

mb→i(xi) (23)

2

a

A variable node tells nearby factor nodes what it thinks 
its costs will be for being in different states.
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Belief Propagation Message Update Rules 
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A variable node tells nearby factor nodes what it thinks 
its costs will be for being in different states.
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Belief Propagation Message Update Rules

ai

j

k

ma→i(xi) =
∑

Xa\xi

fa(Xa)
∏

j∈N(a)\i

∏

b∈N(j)\a

mb→j(xj) (13)

b1(x1) ∝ mA→1(x1) (14)

∝

∑

x2

fA(x1, x2)mB→2(x2) (15)

∝

∑

x2,x3,x4

fA(x1, x2)fB(x2, x3, x4)mC→4(x4) (16)

∝

∑

x2,x3,x4

fA(x1, x2)fB(x2, x3, x4)fC(x4) (17)

bs =
∏

i

bi(xi) (18)

GBethe =
∑

a

∑

Xa

ba(Xa) log

(

ba(Xa)

fa(Xa)
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21000 (23)

bi(xi) =
∑

a∈N(i)

ma→i(xi) (24)

ma→i(xi) = min
xj ,xk

[Ca(xi, xj , xk) + mj→a(xj) + mk→a(xk)] (25)

ma→i(xi) = min
X\xi



Ca(Xa) +
∑

j∈N(a)\i

mj→a(xj)



 (26)

ma→i(xi) = max
X\xi



e−Ca(Xa)
∏

j∈N(a)\i

mj→a(xj)



 (27)

mi→a(xi) =
∑

b∈N(i)\a

mb→i(xi) (28)

mi→a(xi) = bi(xi) − ma→i(xi) (29)
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Belief Propagation Message Update Rules
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k
 “Min-Sum Rule”
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Changes for the better

• Review of factor graphs for optimization and inference, and the 
min-sum Belief Propagation (BP) algorithm

• Gravel and Elser’s “Divide & Concur” algorithm interpreted as a 
message-passing algorithm

• Decoders for Low-Density Parity Check (LDPC) Codes
– Divide & Concur Decoder
– “Difference-Map Belief Propagation” (DMBP) Decoder

• Simulation Results
– DMBP Decoder significantly improves error-floor performance 

compared with standard BP decoders, with similar complexity!

Outline
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Divide & Concur

• Introduced by Simon Gravel and  Veit Elser from Cornell, who 
generalized an approach used by X-ray crystallographers.

• In contrast with BP, works well with continuous-valued 
variables.

• Also works well when there is no local evidence for the 
variables, just constraints between the variables.

• Note: Gravel and Elser did not describe D&C as a message-passing 
algorithm, but it can be formulated in that way.
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Sphere-packing Problem Shows Advantages 
Compared with Belief Propagation

N = 178
m = 0.0839650187

!! " "

N = 179
m = 0.0838519336

N = 181
m = 0.0833676503

!! " "

N = 183
m = 0.0830584737

N = 185
m = 0.0828253725

!! " "

N = 187
m = 0.0827221608

Figure A.6: Improved packings of 178 to 187 disks in a square.
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Improved packings, from Gravel’s Ph.D. thesis (2009)

Continuous variables, and no local evidence
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Divide & Concur Ideas

• Use only “hard” constraints on the variables. I.e., all costs at factor 
nodes are zero or infinity. (Problems with soft constraints can still 
be handled by introducing explicit “cost” variables.)

• Each variable has a “replica” for each constraint it is involved in.
• We search for a set of replica values that satisfy all the constraints 

(“Divide projection”), and such that all replicas for the same 
variable have the same value (“Concur projection”).

• The Divide projection moves the replica values to the nearest 
values that satisfy the constraint.  The Concur projection averages 
the replica values belonging to the same variable.

• Use Elser’s “Difference-Map” dynamics to avoid local traps that 
occur when one naively alternately iterates between Divide and 
Concur projections.



         MITSUBISHI ELECTRIC RESEARCH LABORATORIES

MITSUBISHI
ELECTRIC

Changes for the better

D&C Projections: Divide Projection

1 2

3

4

mi→a(xi) = bi(xi)−ma→i(xi) (29)

x1 ≤ x2 + x3 (30)

x3x4 = 0 (31)

3

mi→a(xi) = bi(xi)−ma→i(xi) (29)

x1 ≤ x2 + x3 (30)

x3x4 = 0 (31)

x2 = (x4)2 (32)

3

-1 0

2

46

35

mi→a(xi) = bi(xi)−ma→i(xi) (29)

x1 ≥ x2 + x3 (30)

3
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D&C Projections: Concur Projection

1 2

3

4

mi→a(xi) = bi(xi)−ma→i(xi) (29)

x1 ≤ x2 + x3 (30)

x3x4 = 0 (31)

3

mi→a(xi) = bi(xi)−ma→i(xi) (29)

x1 ≤ x2 + x3 (30)

x3x4 = 0 (31)

x2 = (x4)2 (32)

3

0 0

0

44

15

mi→a(xi) = bi(xi)−ma→i(xi) (29)

x1 ≥ x2 + x3 (30)

3
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D&C Projections

1 2

3

4

mi→a(xi) = bi(xi)−ma→i(xi) (29)

x1 ≤ x2 + x3 (30)

x3x4 = 0 (31)

3

mi→a(xi) = bi(xi)−ma→i(xi) (29)

x1 ≤ x2 + x3 (30)

x3x4 = 0 (31)

x2 = (x4)2 (32)

3

1/2 0

0

44

1/25

mi→a(xi) = bi(xi)−ma→i(xi) (29)

x1 ≥ x2 + x3 (30)

3
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Traps in Naive Alternating Projection Approach

A

B

A

B

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

C

D

Fig. 1. A simple example of a trap in an iterated projection strategy. If one iteratively projects to the nearest point that satisfies the constraints (A or B),
and then the nearest point where the replica values are equal (the diagonal line) one may be trapped in a short cycle (B to C to B and so on) and never
find the true solution at point A.

To illustrate this point, consider the situation shown in Fig. 1, where we imagine that the space of replicas is only two-

dimensional. Suppose that the diagonal line represents the requirement that all replicas are equal, while the points A and

B are the two replica values that satisfy the other constraints. The only solution point that satisfies the constraints and the

requirement that the replicas are equal is A, but if one starts near the point B, (say at D), then one will move to the nearest
point that satisfies the constraints (B), then the nearest point where the replica values are equal (C), then back to B, and
back to C, and so on. Of course, this is only a toy two-dimensional example, but in non-convex high-dimensional spaces it
is plausible that an iterated projection strategy is prone to falling into such traps.

B. Difference Map

The difference map (DM) is a strategy that improves alternating projections by turning traps in the dynamics into repellers.

It is defined by Gravel and Elser as follows.

rt+1 = rt + β [PC(fD(rt)) − PD(fC(rt))] (1)

where fs(rt) = (1 + γs)Ps(rt)− γsrt for s = C or D with γC = −1/β and γD = 1/β. The parameter β can be chosen to
optimize performance.

We focus here exclusively on the case β = 1, which is usually an excellent choice and corresponds to what Fienup called
the “hybrid input-output” algorithm and which was originally applied in the context of image reconstruction [19][20]. For

β = 1 the dynamics (1) simplify to

rt+1 = PC (rt + 2[PD(rt) − rt]) − [PD(rt) − rt]. (2)

It can be proved that if a fixed point in the dynamics r∗ is reached, i.e., rt+1 = rt = r
∗, then that fixed point must

correspond to a solution of the problem. It is important to note that the fixed point itself is not necessarily a solution. The

solution rsol corresponding to a fixed point r
∗ can be obtained using rsol = PD(r∗) or rsol = PC(r∗ + 2[PD(r∗) − r∗]).

We have found it very useful to think of the difference-map dynamics for a single iteration as a three-step process. The

expression [PD(rt) − rt] represents the change to the current values of the replicas resulting from the divide projection. In

the first step, the values of the replicas move twice the desired amount indicated by the divide projection. We refer to these

new values of the replicas as the “overshoot” values rover
t = rt + 2[PD(rt) − rt]. Then the concur projection is applied to

the overshoot values to obtain the “concurred” values of the replicas rconc
t = PC(rover

t ). Finally the overshoot, i.e., the extra
motion in the first step, is subtracted from the concur projection result to obtain the replica value for the next iteration:

rt+1 = rconc
t − [PD(rt) − rt].

In Fig. 2 we return to our previous example and see that the DM dynamics do not get stuck in a trap. Suppose, for

example, that point A is at (0, 0), point B is at (3, 1), and we start initially at point r1 = (2, 2). The divide projection
would take us to point B, but the overshoot takes us twice as far to rover

1 = (4, 0). The concur projection takes us back
to rconc

1 = (2, 2). Finally, the overshoot is corrected so that r2 = (1, 3). The next full iteration takes us to r3 = (0, 4)
(sub-steps are tabulated in Fig. 2). Now however, we are closer to A then to B. Therefore, the next overshoot take us to
r
over
3 = (0,−4), from which we would move to rconc

3 = (−2,−2), and r4 = r
∗ = (−2, 2). Finally we would have reached

a fixed point in the dynamics, corresponding to the solution at A (which can be obtained from the final value of PD(rt) or
r
conc
t ).

LDPC codes have a structure that make them a good fit for the D&C algorithm. We were curious about whether we could

construct a D&C decoder that was competitive with—or better than—more standard BP decoders. We were particularly

motivated by the idea that the “traps” that the D&C algorithm’s “Difference-Map” dynamics promises to avoid might be

related to the “trapping sets” that plague BP decoders of LDPC codes.

To construct a D&C decoder, we needed to add an important “energy” constraint, in addition to the more obvious parity

check constraints. The energy constraint enforces that the correlation between the channel observations and the desired

codeword should be at least some minimum amount. The effect of this constraint is to ensure that during the decoding

process the candidate solution does not wander too far from the channel observation.

As we had hoped, we found that the D&C decoder can be competitive with BP decoders, and even superior to them in

the error floor regime. Unfortunately, the D&C decoder apparently also has some drawbacks. First, it needs more iterations

to decode. Second, unlike BP, D&C errors are often “undetected errors” in that the decoder returns a codeword that is not

the most likely one. Failures of BP decoding, in contrast, almost always correspond to failures to converge and therefore

are detectable.

The D&C decoder can be described as a message-passing decoder. Using this formulation, we can see how to import

the difference-map idea into a BP setting. We thus also constructed a second new decoder called the difference-map belief

propagation (DMBP) decoder. Essentially, DMBP is a min-sum BP decoder with modified dynamics motivated by the D&C

decoder. Our simulations show that the DMBP decoder improves performance in the error floor regime quite significantly

when compared with standard sum-product belief propagation (BP) decoders. We present results for both the additive white

Gaussian noise (AWGN) channel and the binary symmetric channel (BSC).

The rest of the paper is organized as follows. In Section II, the D&C algorithm is presented, and re-formulated as

a message-passing algorithm. The D&C decoder for LDPC codes is described in Section III. The DMBP algorithm is

introduced in Section IV. In Section V we present simulation results. Conclusions are given in Section VI.

II. DIVIDE AND CONCUR

In this section, we review Gravel and Elser’s “Divide and Concur” (D&C) algorithm. Gravel and Elser did not compare

D&C to BP, but the comparison is illuminating, and helped us design the DMBP decoder. Thus we present D&C in a way

that is consistent with Gravel and Elser’s presentation, but makes comparisons to BP easier. We start by introducing the idea

of “replicas” in Section II-A in the context of the familiar alternating projection algorithm. In Section II-B we introduce and

discuss the difference-map dynamics of D&C. Then, in Section II-C we reformulate D&C as a message-passing algorithm

directly comparable to BP.

A. Replicas and alternating projections

Consider a system with N variables, and M constraints on those variables. We seek a configuration of the N variables

such that all M constraints are satisfied. For each constraint that a variable is involved in, we create one “replica” of the

variable. The idea behind D&C is that by constructing a dynamics of replicas rather than of variables, each constraint can

be locally satisfied (the “divide” step), and then later the possibly different values of replicas of the same variable can be

forced to equal each other (the “concur” step).

Denote using r(a) the vector containing the values of all the replicas associated with the ath constraint and let r[i] be the
vector of all the values of replicas associated with the ith variable. Let r be the vector containing all the values of replicas
of all the variables. Now r(a) for a = 1, 2, · · · , M and r[i] for i = 1, 2, · · · , N are two different ways to partition r into

mutually exclusive sets.

There are two projection operations, the “divide” projection and the “concur” projection, denoted by PD and PC ,

respectively. Both projections act on r and output a new r that satisfies certain requirements. Since r can be partitioned into

mutually exclusive sets, the projections are actually applied to each set independently. The divide projection is a product

of local divide projections P a
D(r(a)) that operate on each r(a) for a = 1, 2, · · · , M . If r(a) satisfies the ath constraint,

P a
D(r(a)) = r(a); otherwise, P

a
D(r(a)) = r̃(a) such that r̃(a) is the closest vector to r(a) that satisfies the ath constraint. The

metric used is normally the ordinary Euclidean distance.

The divide projection forces all constraints to be satisfied, but has the effect that replicas of the same variable do not

necessarily agree with one another. The concur projection is a product of local concur projections P i
C(r[i]) that act on r[i]

for i = 1, 2, · · · , N . Let r̄[i] be the average of all the elements in r[i] and construct a vector r̄[i] with each element equal

to r̄[i], with dimensionality the same as r[i]. Then P i
C(r[i]) = r̄[i]. While the concur projection equalizes the values of the

replicas of the same variable, the new values of the replicas may violate some constraints.

The overall projection PD(r) [alternately PC(r)] is defined as applying P a
D(·) [P i

C(·)] to r(a) for a = 1, 2, . . . , M [r[i] for

i = 1, 2, . . . , N ]. The M [N ] output vectors are then reassembled into the updated r vector through appropriate ordering.
A strategy is needed to combine these two projections to find a set of replica values such that all constraints are satisfied

and all replicas of the same variable are equal. The simplest approach is to alternate two projections, i.e., rt+1 = PC(PD(rt)),
where rt is the vector of replica values at the tth iteration. This scheme works well for convex constraints, but it is prone
to getting stuck in short cycles (“traps”) that do not correspond to solutions.
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Difference-Map Dynamics

r1

r2

r3

r∗

rover
1A

B

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

t rt PD(rt) r
over
t r

conc
t

1 (2, 2) (3, 1) (4, 0) (2, 2)
2 (1, 3) (3, 1) (5,−1) (2, 2)
3 (0, 4) (0, 0) (0,−4) (−2,−2)
4 (−2, 2) (0, 0) (2,−2) (0, 0)
5 (−2, 2)

Fig. 2. An example showing how DM dynamics avoids traps. If we start at the point r1, an iterated projections dynamics would be trapped between
point B and r1, and never find the solution at A. DM dynamics will instead be repelled from the trap and move to r2 (via the three sub-steps denoted
with dashed lines rover

1
, rconc

1
= r1, and r2), then move to r3, and then end at the fixed point r4 = r∗, which corresponds to the solution at A.

We can generalize from this example to understand how the DM dynamics turns a trap into a “repeller,” where at each

iteration, one moves away from the repeller by an amount equal to the distance between the constraint involved and the

nearest point that satisfies the requirement that the replicas be equal. Of course, DM dynamics are not a panacea; it is

possible that D&C can get caught in more complicated cycles or “strange attractors” and never find an existing solution;

but least it will does not get caught in simple traps.

C. D&C as a message-passing algorithm

We turn now to an alternative interpretation of D&C, as a message-passing algorithm on a graph. “Messages” and “beliefs”

are similar to those in BP, but message-update and belief-update rules are different. To begin with, we construct a bi-partite

“constraint graph” of variable nodes and constraint nodes, where each variable is connected to the constraints it is involved

in. A constraint graph can be thought of as a special case of a factor graph [18], where each allowed configuration is given

the same weight, and and disallowed configurations have zero weight.

We identify the D&C “replicas” with the edges of the graph. We denote by r[i]a(t) the value of the replica on the edge
joining variable i to constraint a at the beginning of iteration t, i.e., the appropriate element of r[i](t). We similarly denote
by rover

[i]a (t) and rconc
[i]a (t) the “overshoot” and “concurred” values of the same replica. We note that these are all scalars.

We can alternatively think of the initial value of a replica r[i]a(t) as a “message” from the variable node i to the constraint
node a that we denote as mi→a(t). The set of incoming messages to constraint node a, m→a(t) ≡ {mi→a(t) : i ∈ N (a)}
where N (a) is the set of variable indexes involved in constraint a, can therefore be expressed as m→a(t) = r(a)(t).
In the three-step interpretation of the DM dynamics described above, these replica values are next transformed into

overshoot values by moving by twice the amount indicated by the divide projection. Because the overshoot values are

computed locally at a constraint node using the messages into to the constraint node, we can think of the overshoot values

rover
[i]a (t) as messages from the constraint node a to their neighboring variable nodes i, denoted by ma→i(t). The set of
outgoing messages from constraint node a is ma→(t) ≡ {ma→i(t) : i ∈ N (a)}. This set can thus be calculated as
ma→(t) = rover

a (t) = r(a)(t) + 2[P a
D(r(a)(t)) − r(a)(t)] = m→a(t) + 2[P a

D(m→a(t)) −m→a(t)].
The next step of the D&C algorithm takes the overshoot replica values rover

[i]a (t) and computes concurred values rconc
[i]a (t)

using the concur projection. Note that the concurred values for replicas that are connected to the same variable node i are
all equal to each other. We can think of these concurred values as “beliefs,” denoted by bi(t). Just as in BP, the beliefs at a
variable node i are computed using all the messages coming into that variable node. However, while the BP belief is a sum
of incoming messages, the D&C belief is an average:

bi(t) = P i
C(r[i](t)) =

1

|M(i)|
∑

a∈M(i)

ma→i(t) (3)

where M(i) is the set of constraint indexes in which variable i participates.
Finally, the D&C rule for computing the new replica values at the next iteration is to take the concurred values and

subtract a correction for the amount we overshot when we computed the overshot values. In terms of our belief and message
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Fig. 1. A simple example of a trap in an iterated projection strategy. If one iteratively projects to the nearest point that satisfies the constraints (A or B),
and then the nearest point where the replica values are equal (the diagonal line) one may be trapped in a short cycle (B to C to B and so on) and never
find the true solution at point A.

To illustrate this point, consider the situation shown in Fig. 1, where we imagine that the space of replicas is only two-

dimensional. Suppose that the diagonal line represents the requirement that all replicas are equal, while the points A and

B are the two replica values that satisfy the other constraints. The only solution point that satisfies the constraints and the

requirement that the replicas are equal is A, but if one starts near the point B, (say at D), then one will move to the nearest
point that satisfies the constraints (B), then the nearest point where the replica values are equal (C), then back to B, and
back to C, and so on. Of course, this is only a toy two-dimensional example, but in non-convex high-dimensional spaces it
is plausible that an iterated projection strategy is prone to falling into such traps.

B. Difference Map

The difference map (DM) is a strategy that improves alternating projections by turning traps in the dynamics into repellers.

It is defined by Gravel and Elser as follows.

rt+1 = rt + β [PC(fD(rt)) − PD(fC(rt))] (1)

where fs(rt) = (1 + γs)Ps(rt)− γsrt for s = C or D with γC = −1/β and γD = 1/β. The parameter β can be chosen to
optimize performance.

We focus here exclusively on the case β = 1, which is usually an excellent choice and corresponds to what Fienup called
the “hybrid input-output” algorithm and which was originally applied in the context of image reconstruction [19][20]. For

β = 1 the dynamics (1) simplify to

rt+1 = PC (rt + 2[PD(rt) − rt]) − [PD(rt) − rt]. (2)

It can be proved that if a fixed point in the dynamics r∗ is reached, i.e., rt+1 = rt = r
∗, then that fixed point must

correspond to a solution of the problem. It is important to note that the fixed point itself is not necessarily a solution. The

solution rsol corresponding to a fixed point r
∗ can be obtained using rsol = PD(r∗) or rsol = PC(r∗ + 2[PD(r∗) − r∗]).

We have found it very useful to think of the difference-map dynamics for a single iteration as a three-step process. The

expression [PD(rt) − rt] represents the change to the current values of the replicas resulting from the divide projection. In

the first step, the values of the replicas move twice the desired amount indicated by the divide projection. We refer to these

new values of the replicas as the “overshoot” values rover
t = rt + 2[PD(rt) − rt]. Then the concur projection is applied to

the overshoot values to obtain the “concurred” values of the replicas rconc
t = PC(rover

t ). Finally the overshoot, i.e., the extra
motion in the first step, is subtracted from the concur projection result to obtain the replica value for the next iteration:

rt+1 = rconc
t − [PD(rt) − rt].

In Fig. 2 we return to our previous example and see that the DM dynamics do not get stuck in a trap. Suppose, for

example, that point A is at (0, 0), point B is at (3, 1), and we start initially at point r1 = (2, 2). The divide projection
would take us to point B, but the overshoot takes us twice as far to rover

1 = (4, 0). The concur projection takes us back
to rconc

1 = (2, 2). Finally, the overshoot is corrected so that r2 = (1, 3). The next full iteration takes us to r3 = (0, 4)
(sub-steps are tabulated in Fig. 2). Now however, we are closer to A then to B. Therefore, the next overshoot take us to
r
over
3 = (0,−4), from which we would move to rconc

3 = (−2,−2), and r4 = r
∗ = (−2, 2). Finally we would have reached

a fixed point in the dynamics, corresponding to the solution at A (which can be obtained from the final value of PD(rt) or
r
conc
t ).

Difference-Map Dynamics:
• Overshoot
• Concur
• Correct
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Divide & Concur As Message-Passing

• “Overshoot” replica values are messages from constraints to 
variables. 

• “Concurred” replica values are beliefs.

• “Corrected” replica values are messages from variables to checks. 

• Otherwise, let ν = argmini |mi→a(t)|. Especially for the BSC, it is possible that several messages have equally minimal
|mi→a(t)|. In this case, we randomly pick one of them and use its index as ν.

• Flip hνa, i.e., if hνa = −1, set it to 1 and if hνa = 1, set it to −1. Then set P a
D(m→a(t)) = ha and return.

Recall that the energy constraint is −
∑N

i=1 xiLi ≤ Emax. This implies a divide projection on the vector of messages

m→0(t), performed as follows:

• If the energy constraint is already satisfied by the messages m→0(t), return the current messages, i.e., P 0
D(m→0(t)) =

m→0(t). (Recall however that the energy constraint will never be satisfied for the choice of Emax = −(1 + ε)
∑

i |Li|
that we use in our simulations.)

• Otherwise, find h0 which is the closest vector to m→0(t) and satisfies the energy constraint. An easy application of
vector calculus can be used to derive that the ith component hi0 is given by the formula

hi0 = mi→0(t) −
Li(

∑

i Limi→0(t) + Emax)
∑

i L2
i

(6)

Set P 0
D(m→0(t)) = h0 and return.

Finally, the concur projection PC can be partitioned into a set of N projection operators P i
C , where each P i

c operates

independently on the vector of messages m→i ≡ {ma→i(t) : a ∈ M(i)} and outputs the belief bi(t), the average over the
components of the vector m→i.

B. D&C algorithm for LDPC decoding

The overall D&C decoder proceeds as follows.

0. Initialization: Set the maximum number of iterations to Tmax and the current iteration to t = 1. Initialize the messages
out of variable nodes mi→a(t = 1) for all i and a ∈ M(i) to equal 2pi − 1, where pi is the a priori probability that

the ith transmitted symbol xi was a 1, given by pi ≡ exp(Li)/(1 + exp(Li)).
1. Update messages from checks to variables: Given the messages m→a(t) ≡ {mi→a(t) : i ∈ N (a)} into each constraint

a, compute the messages out of each constraint ma→(t) ≡ {ma→i(t) : i ∈ N (a)} using the overshoot formula

ma→(t) = m→a(t) + 2[P a
D(m→a(t)) −m→a(t)] (7)

where P a
D(m→a(t)) is the divide projection operation for constraint a.

2. Update beliefs: Compute the beliefs at each variable node i using the concur projections

bi(t) = P i
C(m→i(t)) =

1

|M(i)|
∑

a∈M(i)

ma→i(t). (8)

3. Check if codeword has been found: Create ĉ = {ĉi} such that ĉi = 1 if bi(t) < 0, ĉi = 0 if bi(t) > 0 and flip a coin
to decide ĉi if bi(t) = 0. If Hĉ = 0 output ĉ as the decoded codeword and stop.

4. Update messages from variables to checks: Increment t := t + 1. If t > Tmax stop and return FAILURE. Otherwise,

update each message out of the variable nodes using the “overshoot correction” rule given in equation (4) and go back

to Step 1.

As already mentioned in the introduction, the D&C decoder performs reasonably well, but with some problems. We

defer a detailed discussion of the D&C simulation results until section V. First we describe a second novel decoder, the

difference-map belief propagation (DMBP) decoder, so that we can compare them.

IV. DMBP DECODER

Our motivation in creating the DMBP decoder was that BP decoders generally perform well, but they seem to use

something like an iterated projection strategy, and perhaps the trapping sets that plague the error-floor regime are related

to the “traps” that the difference-map dynamics is supposed to ameliorate. Since we can also describe D&C decoders as

message-passing decoders, we could try to create a new BP decoder that was a mixture of BP and difference-map ideas.

For simplicity, we work with a min-sum BP decoder using messages and beliefs that correspond to log-likelihood ratios.

Note that the min-sum message update rule is much simpler to implement in hardware than the standard sum-product rule.

Normally, sum-product (or some approximation to sum-product) BP decoders are favored over min-sum BP decoders because

they perform better, but we found that the straightforward min-sum DMBP decoder will out-perform the more complicated

sum-product BP decoder. Our preliminary simulations also show, somewhat surprisingly, that the min-sum DMBP decoder

slightly out-performs a sum-product DMBP decoder. (We don’t further discuss the sum-product DMBP decoder herein.)

We use the same notation for messages and beliefs that were used in the discussion of the D&C decoder in Section III. We

compare, on an intuitive level, the min-sum BP decoder with the D&C decoder in terms of belief updates and message-updates

at both the variable and check nodes.

formulation, we compute the outgoing messages from a variable node at the next iteration using the rule

mi→a(t + 1) = bi(t) − 1/2 [ma→i(t) − mi→a(t)] . (4)

Comparing with the ordinary BP rule

mi→a(t + 1) = bi(t) − ma→i(t), (5)

we note that the message out of a variable node in D&C also depends on the value of the same message at the previous

iteration, which does not happen in BP.

To summarize, the overall structure of BP and D&C as message-passing algorithms is similar. In both one iteratively

updates beliefs at variable nodes and messages between variable nodes and constraint nodes. Furthermore, messages out of

a constraint node are computed based on the messages into the constraint node, beliefs are computed based on the messages

into a variable node, and the messages out of the variable node depend on the beliefs and the messages into a variable node.

The differences are in the specific forms of the message-update and belief-update rules, and the fact that a message-update

rule for a message out of a variable node in D&C also depends on the value of the same message in the previous iteration.

III. D&C DECODER FOR LDPC CODES

Decoding of LDPC codes can be described as a constraint satisfaction problem. We restrict ourselves here to binary

LDPC codes, although generalizations to q-ary codes are straightforward. Searching for a codeword is equivalent to seeking
a binary sequence which satisfies all the single-parity check (SPC) constraints simultaneously. We also add one important

additional constraint, which is that the likelihood of a binary sequence must be greater than some minimum amount. Then

the decoding problem can be divided into many simple sub-problems which can be solved independently using the D&C

approach.

Let M and N be the number of SPC constraints and bits of a binary LDPC code, respectively. Let H be the parity check

matrix which defines the code. Assume BPSK signaling with unit energy, which maps a binary codeword c = (c1, c2, . . . , cN )
into a sequence x = (x1, x2, . . . , xN ), according to xi = 1−2ci, for i = 1, 2, . . . , N . The sequence x is transmitted through
a channel and the received channel observations are denoted y = (y1, y2, . . . , yN). Let the log-likelihood ratios (LLR’s)
corresponding to the received channel observations be L = (L1, L2, . . . , LN ), where

Li = log

(

Pr[yi|xi = 1]

Pr[yi|xi = −1]

)

.

Our goal is to recover the transmitted sequence of variables x. To do this, we will search for a sequence of ±1’s that
satisfies all the SPC constraints and has the highest likelihood, or equivalently, the lowest “energy,” where the energy is

defined as E = −
∑N

i=1 Lixi. Note that although our desired sequence consists only of ±1 variables, the “replica” values,
or equivalently “messages” and “beliefs,” are real-valued.

In all, we have N variables xk, and M + 1 constraints, of which M are SPC constraints, with one additional energy

constraint. We will write the energy constraint as −
∑

i Lixi ≤ Emax, where different choices of Emax result in different

decoders. It is not obvious how to choose Emax; we performed preliminary experiments to search for an Emax that optimizes

decoding performance. Somewhat surprisingly, the best choice for Emax is one that for which the energy constraint can

never actually be satisfied: we found that Emax = −(1 + ε)
∑

i |Li|, with 0 < ε # 1 was an excellent choice. The fact that
the energy constraint is never satisfied is not a problem because the decoder terminates if it finds a codeword that satisfies

all the SPC constraints. Until then, the energy constraint acts effectively to keep the replica values near the transmitted

sequence.

We will describe the D&C decoder as an iterative message-update algorithm on a constraint graph, following the

formulation in section II-C. We use N variable indexes i = 1, 2, · · · , N and M + 1 constraint indexes a = 0, 1, 2, · · · , M ,

where the 0th constraint is the energy constraint. SPC constraints involve a small number of variables, but the energy

constraint involves every variable. To lay the groundwork for the overall D&C decoder, we now explain how to perform the

divide and concur projections.

A. Divide and concur projections for LDPC decoding

The divide projection PD can be partitioned into a collection of M + 1 projections P a
D , where each projection operates

independently on a vector of messages m→a(t) ≡ {mi→a(t) : i ∈ N (a)} and outputs a vector (of the same dimensionality)
of projected messages P a

D(m→a(t)). The output vector is as close as possible to the original values m→a(t) while satisfying
the ath constraint.
The SPC constraints require that the variables involved in a constraint are all ±1, with an even number of −1’s. For these

constraints we efficiently perform the divide projection as follows:

• Make a hard decision hia on each of mi→a(t) such that hia = 1 if mi→a(t) ≥ 0 and hia = −1 otherwise.
• Check if ha contains an even number of −1’s. If it does, set P a

D(m→a(t)) = ha and return.

• Otherwise, let ν = argmini |mi→a(t)|. Especially for the BSC, it is possible that several messages have equally minimal
|mi→a(t)|. In this case, we randomly pick one of them and use its index as ν.

• Flip hνa, i.e., if hνa = −1, set it to 1 and if hνa = 1, set it to −1. Then set P a
D(m→a(t)) = ha and return.

Recall that the energy constraint is −
∑N

i=1 xiLi ≤ Emax. This implies a divide projection on the vector of messages

m→0(t), performed as follows:

• If the energy constraint is already satisfied by the messages m→0(t), return the current messages, i.e., P 0
D(m→0(t)) =

m→0(t). (Recall however that the energy constraint will never be satisfied for the choice of Emax = −(1 + ε)
∑

i |Li|
that we use in our simulations.)

• Otherwise, find h0 which is the closest vector to m→0(t) and satisfies the energy constraint. An easy application of
vector calculus can be used to derive that the ith component hi0 is given by the formula

hi0 = mi→0(t) −
Li(

∑

i Limi→0(t) + Emax)
∑

i L2
i

(6)

Set P 0
D(m→0(t)) = h0 and return.

Finally, the concur projection PC can be partitioned into a set of N projection operators P i
C , where each P i

c operates

independently on the vector of messages m→i ≡ {ma→i(t) : a ∈ M(i)} and outputs the belief bi(t), the average over the
components of the vector m→i.

B. D&C algorithm for LDPC decoding

The overall D&C decoder proceeds as follows.

0. Initialization: Set the maximum number of iterations to Tmax and the current iteration to t = 1. Initialize the messages
out of variable nodes mi→a(t = 1) for all i and a ∈ M(i) to equal 2pi − 1, where pi is the a priori probability that

the ith transmitted symbol xi was a 1, given by pi ≡ exp(Li)/(1 + exp(Li)).
1. Update messages from checks to variables: Given the messages m→a(t) ≡ {mi→a(t) : i ∈ N (a)} into each constraint

a, compute the messages out of each constraint ma→(t) ≡ {ma→i(t) : i ∈ N (a)} using the overshoot formula

ma→(t) = m→a(t) + 2[P a
D(m→a(t)) −m→a(t)] (7)

where P a
D(m→a(t)) is the divide projection operation for constraint a.

2. Update beliefs: Compute the beliefs at each variable node i using the concur projections

bi(t) = P i
C(m→i(t)) =

1

|M(i)|
∑

a∈M(i)

ma→i(t). (8)

3. Check if codeword has been found: Create ĉ = {ĉi} such that ĉi = 1 if bi(t) < 0, ĉi = 0 if bi(t) > 0 and flip a coin
to decide ĉi if bi(t) = 0. If Hĉ = 0 output ĉ as the decoded codeword and stop.

4. Update messages from variables to checks: Increment t := t + 1. If t > Tmax stop and return FAILURE. Otherwise,

update each message out of the variable nodes using the “overshoot correction” rule given in equation (4) and go back

to Step 1.

As already mentioned in the introduction, the D&C decoder performs reasonably well, but with some problems. We

defer a detailed discussion of the D&C simulation results until section V. First we describe a second novel decoder, the

difference-map belief propagation (DMBP) decoder, so that we can compare them.

IV. DMBP DECODER

Our motivation in creating the DMBP decoder was that BP decoders generally perform well, but they seem to use

something like an iterated projection strategy, and perhaps the trapping sets that plague the error-floor regime are related

to the “traps” that the difference-map dynamics is supposed to ameliorate. Since we can also describe D&C decoders as

message-passing decoders, we could try to create a new BP decoder that was a mixture of BP and difference-map ideas.

For simplicity, we work with a min-sum BP decoder using messages and beliefs that correspond to log-likelihood ratios.

Note that the min-sum message update rule is much simpler to implement in hardware than the standard sum-product rule.

Normally, sum-product (or some approximation to sum-product) BP decoders are favored over min-sum BP decoders because

they perform better, but we found that the straightforward min-sum DMBP decoder will out-perform the more complicated

sum-product BP decoder. Our preliminary simulations also show, somewhat surprisingly, that the min-sum DMBP decoder

slightly out-performs a sum-product DMBP decoder. (We don’t further discuss the sum-product DMBP decoder herein.)

We use the same notation for messages and beliefs that were used in the discussion of the D&C decoder in Section III. We

compare, on an intuitive level, the min-sum BP decoder with the D&C decoder in terms of belief updates and message-updates

at both the variable and check nodes.
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Changes for the better

• Review of factor graphs for optimization and inference, and the 
min-sum Belief Propagation (BP) algorithm

• Gravel and Elser’s “Divide & Concur” algorithm interpreted as a 
message-passing algorithm

• Decoders for Low-Density Parity Check (LDPC) Codes
– Divide & Concur Decoder
– “Difference-Map Belief Propagation” (DMBP) Decoder

• Simulation Results
– DMBP Decoder significantly improves error-floor performance 

compared with standard BP decoders, with similar complexity!

Outline
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Changes for the better

Divide & Concur Decoder (Using Cost Variables)

+ + +

Costs / Observed Symbols

Transmitted Codeword Bits

Energy Constraint

Parity Check
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Divide & Concur Decoder (Simplified Version)

+ + +

Transmitted Codeword 
Symbols 

Energy Constraint

Parity Checks

• Otherwise, let ν = argmini |mi→a(t)|. Especially for the BSC, it is possible that several messages have equally minimal
|mi→a(t)|. In this case, we randomly pick one of them and use its index as ν.

• Flip hνa, i.e., if hνa = −1, set it to 1 and if hνa = 1, set it to −1. Then set P a
D(m→a(t)) = ha and return.

Recall that the energy constraint is −
∑N

i=1 xiLi ≤ Emax. This implies a divide projection on the vector of messages

m→0(t), performed as follows:

• If the energy constraint is already satisfied by the messages m→0(t), return the current messages, i.e., P 0
D(m→0(t)) =

m→0(t). (Recall however that the energy constraint will never be satisfied for the choice of Emax = −(1 + ε)
∑

i |Li|
that we use in our simulations.)

• Otherwise, find h0 which is the closest vector to m→0(t) and satisfies the energy constraint. An easy application of
vector calculus can be used to derive that the ith component hi0 is given by the formula

hi0 = mi→0(t) −
Li(

∑

i Limi→0(t) + Emax)
∑

i L2
i

(6)

Set P 0
D(m→0(t)) = h0 and return.

Finally, the concur projection PC can be partitioned into a set of N projection operators P i
C , where each P i

c operates

independently on the vector of messages m→i ≡ {ma→i(t) : a ∈ M(i)} and outputs the belief bi(t), the average over the
components of the vector m→i.

B. D&C algorithm for LDPC decoding

The overall D&C decoder proceeds as follows.

0. Initialization: Set the maximum number of iterations to Tmax and the current iteration to t = 1. Initialize the messages
out of variable nodes mi→a(t = 1) for all i and a ∈ M(i) to equal 2pi − 1, where pi is the a priori probability that

the ith transmitted symbol xi was a 1, given by pi ≡ exp(Li)/(1 + exp(Li)).
1. Update messages from checks to variables: Given the messages m→a(t) ≡ {mi→a(t) : i ∈ N (a)} into each constraint

a, compute the messages out of each constraint ma→(t) ≡ {ma→i(t) : i ∈ N (a)} using the overshoot formula

ma→(t) = m→a(t) + 2[P a
D(m→a(t)) −m→a(t)] (7)

where P a
D(m→a(t)) is the divide projection operation for constraint a.

2. Update beliefs: Compute the beliefs at each variable node i using the concur projections

bi(t) = P i
C(m→i(t)) =

1

|M(i)|
∑

a∈M(i)

ma→i(t). (8)

3. Check if codeword has been found: Create ĉ = {ĉi} such that ĉi = 1 if bi(t) < 0, ĉi = 0 if bi(t) > 0 and flip a coin
to decide ĉi if bi(t) = 0. If Hĉ = 0 output ĉ as the decoded codeword and stop.

4. Update messages from variables to checks: Increment t := t + 1. If t > Tmax stop and return FAILURE. Otherwise,

update each message out of the variable nodes using the “overshoot correction” rule given in equation (4) and go back

to Step 1.

As already mentioned in the introduction, the D&C decoder performs reasonably well, but with some problems. We

defer a detailed discussion of the D&C simulation results until section V. First we describe a second novel decoder, the

difference-map belief propagation (DMBP) decoder, so that we can compare them.

IV. DMBP DECODER

Our motivation in creating the DMBP decoder was that BP decoders generally perform well, but they seem to use

something like an iterated projection strategy, and perhaps the trapping sets that plague the error-floor regime are related

to the “traps” that the difference-map dynamics is supposed to ameliorate. Since we can also describe D&C decoders as

message-passing decoders, we could try to create a new BP decoder that was a mixture of BP and difference-map ideas.

For simplicity, we work with a min-sum BP decoder using messages and beliefs that correspond to log-likelihood ratios.

Note that the min-sum message update rule is much simpler to implement in hardware than the standard sum-product rule.

Normally, sum-product (or some approximation to sum-product) BP decoders are favored over min-sum BP decoders because

they perform better, but we found that the straightforward min-sum DMBP decoder will out-perform the more complicated

sum-product BP decoder. Our preliminary simulations also show, somewhat surprisingly, that the min-sum DMBP decoder

slightly out-performs a sum-product DMBP decoder. (We don’t further discuss the sum-product DMBP decoder herein.)

We use the same notation for messages and beliefs that were used in the discussion of the D&C decoder in Section III. We

compare, on an intuitive level, the min-sum BP decoder with the D&C decoder in terms of belief updates and message-updates

at both the variable and check nodes.

mi→a(xi) = bi(xi)−ma→i(xi) (29)

x1 ≥ x2 + x3 (30)

xi = ±1 (31)

3

formulation, we compute the outgoing messages from a variable node at the next iteration using the rule

mi→a(t + 1) = bi(t) − 1/2 [ma→i(t) − mi→a(t)] . (4)

Comparing with the ordinary BP rule

mi→a(t + 1) = bi(t) − ma→i(t), (5)

we note that the message out of a variable node in D&C also depends on the value of the same message at the previous

iteration, which does not happen in BP.

To summarize, the overall structure of BP and D&C as message-passing algorithms is similar. In both one iteratively

updates beliefs at variable nodes and messages between variable nodes and constraint nodes. Furthermore, messages out of

a constraint node are computed based on the messages into the constraint node, beliefs are computed based on the messages

into a variable node, and the messages out of the variable node depend on the beliefs and the messages into a variable node.

The differences are in the specific forms of the message-update and belief-update rules, and the fact that a message-update

rule for a message out of a variable node in D&C also depends on the value of the same message in the previous iteration.

III. D&C DECODER FOR LDPC CODES

Decoding of LDPC codes can be described as a constraint satisfaction problem. We restrict ourselves here to binary

LDPC codes, although generalizations to q-ary codes are straightforward. Searching for a codeword is equivalent to seeking
a binary sequence which satisfies all the single-parity check (SPC) constraints simultaneously. We also add one important

additional constraint, which is that the likelihood of a binary sequence must be greater than some minimum amount. Then

the decoding problem can be divided into many simple sub-problems which can be solved independently using the D&C

approach.

Let M and N be the number of SPC constraints and bits of a binary LDPC code, respectively. Let H be the parity check

matrix which defines the code. Assume BPSK signaling with unit energy, which maps a binary codeword c = (c1, c2, . . . , cN )
into a sequence x = (x1, x2, . . . , xN ), according to xi = 1−2ci, for i = 1, 2, . . . , N . The sequence x is transmitted through
a channel and the received channel observations are denoted y = (y1, y2, . . . , yN). Let the log-likelihood ratios (LLR’s)
corresponding to the received channel observations be L = (L1, L2, . . . , LN ), where

Li = log

(

Pr[yi|xi = 1]

Pr[yi|xi = −1]

)

.

Our goal is to recover the transmitted sequence of variables x. To do this, we will search for a sequence of ±1’s that
satisfies all the SPC constraints and has the highest likelihood, or equivalently, the lowest “energy,” where the energy is

defined as E = −
∑N

i=1 Lixi. Note that although our desired sequence consists only of ±1 variables, the “replica” values,
or equivalently “messages” and “beliefs,” are real-valued.

In all, we have N variables xk, and M + 1 constraints, of which M are SPC constraints, with one additional energy

constraint. We will write the energy constraint as −
∑

i Lixi ≤ Emax, where different choices of Emax result in different

decoders. It is not obvious how to choose Emax; we performed preliminary experiments to search for an Emax that optimizes

decoding performance. Somewhat surprisingly, the best choice for Emax is one that for which the energy constraint can

never actually be satisfied: we found that Emax = −(1 + ε)
∑

i |Li|, with 0 < ε # 1 was an excellent choice. The fact that
the energy constraint is never satisfied is not a problem because the decoder terminates if it finds a codeword that satisfies

all the SPC constraints. Until then, the energy constraint acts effectively to keep the replica values near the transmitted

sequence.

We will describe the D&C decoder as an iterative message-update algorithm on a constraint graph, following the

formulation in section II-C. We use N variable indexes i = 1, 2, · · · , N and M + 1 constraint indexes a = 0, 1, 2, · · · , M ,

where the 0th constraint is the energy constraint. SPC constraints involve a small number of variables, but the energy

constraint involves every variable. To lay the groundwork for the overall D&C decoder, we now explain how to perform the

divide and concur projections.

A. Divide and concur projections for LDPC decoding

The divide projection PD can be partitioned into a collection of M + 1 projections P a
D , where each projection operates

independently on a vector of messages m→a(t) ≡ {mi→a(t) : i ∈ N (a)} and outputs a vector (of the same dimensionality)
of projected messages P a

D(m→a(t)). The output vector is as close as possible to the original values m→a(t) while satisfying
the ath constraint.
The SPC constraints require that the variables involved in a constraint are all ±1, with an even number of −1’s. For these

constraints we efficiently perform the divide projection as follows:

• Make a hard decision hia on each of mi→a(t) such that hia = 1 if mi→a(t) ≥ 0 and hia = −1 otherwise.
• Check if ha contains an even number of −1’s. If it does, set P a

D(m→a(t)) = ha and return.

Energy constraint never satisfied, but 
terminate when you find a codeword

(See also Gravel Ph.D. thesis 2009)
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Difference-Map Belief Propagation

• D&C decoder performs OK, but not really better than sum-
product BP.

• D&C decoder often decodes to incorrect codewords, something 
BP almost never does.

• But perhaps the “traps” that the difference-map avoids are related 
to the “trapping sets” that cause poor error-floor performance of 
BP decoders.

• Can we import the “difference-map” idea into a BP decoder?
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Beginning with the message-updates at a check node, the standard min-sum BP update rules are to take incoming messages

mi→a(t) and compute outgoing messages according to the rule that

ma→i(t) =

(

min
j∈N (a)\i

|mj→a(t)|
)

∏

j∈N (a)\i

sgn(mj→a(t)), (9)

where sgn(z) = 1 if z ≥ 0 and −1 else. Comparing with the D&C “overshoot” message-update rule, we note that the

min-sum updates, in some sense, also “overshoot”. For example, at a check node that has three incoming positive messages

and one incoming negative message, we obtain three outgoing negative messages and one outgoing positive message. This

overshoots the “correct” solution of having an even number of negative messages. Because the min-sum rule for messages

outgoing towards a particular variable ignore the incoming message from that variable, all the outgoing messages move

beyond what is necessary (at least in terms of sign) to satisfy the constraint. Since we want an overshoot, we decided to

leave this rule unmodified.

Turning to the belief update rule, the standard BP rule is to compute the belief as the sum of incoming messages (including

the message from the observation), while the D&C rule is that the belief is the average of incoming messages. We decided

to use the compromise rule

bi(t) = Z



Li +
∑

a∈M(i)

ma→i(t)



 (10)

where Z is a parameter chosen by optimizing decoder performance.

Finally, for the message-update rule for messages at the variable nodes, we directly copy the “correction” rule from D&C.

Our intuitive idea is that perhaps standard BP is missing the correction that is important in making DM dynamics repel

away from traps.

To summarize, the DMBP decoder works as follows:

0. Initialization: Set the maximum number of iterations to Tmax and the current iteration to t = 1. Initialize the the
messages out of variable nodes mi→a(t = 1) for all i and a ∈ M(i) to equal Li.

1. Update messages from checks to variables: Given the messages mi→a(t) coming into the constraint node a, compute
the outgoing messages using the min-sum message update rule given in equation (9).

2. Update beliefs: Compute the beliefs at each variable node i using the belief update rule given in equation (10).
3. Check if codeword has been found: Create ĉ = {ĉi} such that ĉi = 1 if bi(t) < 0, ĉi = 0 if bi(t) > 0 and flip a coin

to decide ĉi if bi(t) = 0. If Hĉ = 0 output ĉ as the decoded codeword and stop.

4. Update messages from variables to checks: Increment t := t + 1. If t > Tmax stop and return FAILURE. Otherwise,

update each message out of the variable nodes using the “overshoot correction” rule given in equation (4) and go back

to Step 1.

V. SIMULATION RESULTS

In this section, we compare simulation results of the D&C and DMBP decoders to those of a variety of other decoders.

The decoding algorithms are applied to two kinds of LDPC codes and simulated over both the BSC and the AWGN channel.

One code is a random regular LDPC code with length 1057 and rate 0.77, obtained from [21]. The other code is a array

LDPC code [22][4], a quasi-cyclic (QC) LDPC code with length 2209 and rate 0.916.

The first point of comparison of our proposed decoders is to sum-product BP decoding. When simulating transmission over

the BSC, in order better to probe the error floor region, we implement the multistage decoder introduced in [15]. Multistage

decoders pre-append simpler decoders (in our case Richardson & Urbanke’s Algorithm-E [23] and/or regular sum-product

BP) to the more complex decoders of interest (e.g., D&C). The simpler decoders either decoder or fail to decoder in a

detectable way (e.g., by not converging in BP’s case). Failures to decode trigger the use of the more complex decoders.

In this way one can often achieve the WER performance of the most complex decoder at an expected complexity close to

that of the most simple decoder. Our first use of the multistage approach in this paper is to calculate the performance of

sum-product BP decoding for the BSC. We implement a multistage decoder that combines a first-stage Algorithm-E to a

second-stage sum-product BP. We term the combination E-BP. For the sum-product BP simulations of the AWGN channel

simulations we implement a standard sum-product BP decoder (and not a multistage decoder) as we have found Algorithm-E

has very poor performance on the AWGN channel and thus does not appreciably reduce simulation time.

For D&C and DMBP we provide results for standard (single-stage) implementations of both algorithms as well as for

multi-stage implementations. As per the discussion above, we use E-BP as the initial stages for simulations over the BSC

and BP by itself as a first stage for simulations of the AWGN channel. We denote the resulting multi-stage decoders by

E-BP-DMBP, E-BP-D&C, BP-DMBP and BP-D&C.

Our final points of comparison are to linear programming (LP) decoding and mixed-integer LP (MILP) decoding. For the

BSC, we implement the multistage decoders E-BP-LP and E-BP-MILP(l) for l = 10, where l is the maximum number of

• Otherwise, let ν = argmini |mi→a(t)|. Especially for the BSC, it is possible that several messages have equally minimal
|mi→a(t)|. In this case, we randomly pick one of them and use its index as ν.

• Flip hνa, i.e., if hνa = −1, set it to 1 and if hνa = 1, set it to −1. Then set P a
D(m→a(t)) = ha and return.

Recall that the energy constraint is −
∑N

i=1 xiLi ≤ Emax. This implies a divide projection on the vector of messages

m→0(t), performed as follows:

• If the energy constraint is already satisfied by the messages m→0(t), return the current messages, i.e., P 0
D(m→0(t)) =

m→0(t). (Recall however that the energy constraint will never be satisfied for the choice of Emax = −(1 + ε)
∑

i |Li|
that we use in our simulations.)

• Otherwise, find h0 which is the closest vector to m→0(t) and satisfies the energy constraint. An easy application of
vector calculus can be used to derive that the ith component hi0 is given by the formula

hi0 = mi→0(t) −
Li(

∑

i Limi→0(t) + Emax)
∑

i L2
i

(6)

Set P 0
D(m→0(t)) = h0 and return.

Finally, the concur projection PC can be partitioned into a set of N projection operators P i
C , where each P i

c operates

independently on the vector of messages m→i ≡ {ma→i(t) : a ∈ M(i)} and outputs the belief bi(t), the average over the
components of the vector m→i.

B. D&C algorithm for LDPC decoding

The overall D&C decoder proceeds as follows.

0. Initialization: Set the maximum number of iterations to Tmax and the current iteration to t = 1. Initialize the messages
out of variable nodes mi→a(t = 1) for all i and a ∈ M(i) to equal 2pi − 1, where pi is the a priori probability that

the ith transmitted symbol xi was a 1, given by pi ≡ exp(Li)/(1 + exp(Li)).
1. Update messages from checks to variables: Given the messages m→a(t) ≡ {mi→a(t) : i ∈ N (a)} into each constraint

a, compute the messages out of each constraint ma→(t) ≡ {ma→i(t) : i ∈ N (a)} using the overshoot formula

ma→(t) = m→a(t) + 2[P a
D(m→a(t)) −m→a(t)] (7)

where P a
D(m→a(t)) is the divide projection operation for constraint a.

2. Update beliefs: Compute the beliefs at each variable node i using the concur projections

bi(t) = P i
C(m→i(t)) =

1

|M(i)|
∑

a∈M(i)

ma→i(t). (8)

3. Check if codeword has been found: Create ĉ = {ĉi} such that ĉi = 1 if bi(t) < 0, ĉi = 0 if bi(t) > 0 and flip a coin
to decide ĉi if bi(t) = 0. If Hĉ = 0 output ĉ as the decoded codeword and stop.

4. Update messages from variables to checks: Increment t := t + 1. If t > Tmax stop and return FAILURE. Otherwise,

update each message out of the variable nodes using the “overshoot correction” rule given in equation (4) and go back

to Step 1.

As already mentioned in the introduction, the D&C decoder performs reasonably well, but with some problems. We

defer a detailed discussion of the D&C simulation results until section V. First we describe a second novel decoder, the

difference-map belief propagation (DMBP) decoder, so that we can compare them.

IV. DMBP DECODER

Our motivation in creating the DMBP decoder was that BP decoders generally perform well, but they seem to use

something like an iterated projection strategy, and perhaps the trapping sets that plague the error-floor regime are related

to the “traps” that the difference-map dynamics is supposed to ameliorate. Since we can also describe D&C decoders as

message-passing decoders, we could try to create a new BP decoder that was a mixture of BP and difference-map ideas.

For simplicity, we work with a min-sum BP decoder using messages and beliefs that correspond to log-likelihood ratios.

Note that the min-sum message update rule is much simpler to implement in hardware than the standard sum-product rule.

Normally, sum-product (or some approximation to sum-product) BP decoders are favored over min-sum BP decoders because

they perform better, but we found that the straightforward min-sum DMBP decoder will out-perform the more complicated

sum-product BP decoder. Our preliminary simulations also show, somewhat surprisingly, that the min-sum DMBP decoder

slightly out-performs a sum-product DMBP decoder. (We don’t further discuss the sum-product DMBP decoder herein.)

We use the same notation for messages and beliefs that were used in the discussion of the D&C decoder in Section III. We

compare, on an intuitive level, the min-sum BP decoder with the D&C decoder in terms of belief updates and message-updates

at both the variable and check nodes.
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∏
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∑
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∑
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probability(X) ∝ e−cost(X) (15)

Cost =
M
∑

a=1

Ca(Xa) (16)

Cost = Ca(x1, x2, x3) + Cb(x2, x4) + Cc(x3, x4) (17)

21000 (18)

bi(xi) =
∑

a∈N(i)

ma→i(xi) (19)

ca→i(xi) = min
xj ,xk

[Ca(xi, xj , xk) + cj→a(xj) + ck→a(xk)] (20)

ca→i(xi) = min
X\xi



Ca(Xa) +
∑

j∈N(a)\i

cj→a(xj)



 (21)

ma→i(xi) = max
X\xi



e−Ca(Xa)
∏

j∈N(a)\i

mj→a(xj)



 (22)

ci→a(xi) =
∑

b∈N(i)\a

cb→i(xi) = Bi(xi) − ca→i(xi) (23)

2

ma→i(xi) =
∑

Xa\xi

fa(Xa)
∏

j∈N(a)\i

∏
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∝
∑
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∝
∑
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∑
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xj ,xk

[Ca(xi, xj , xk) + cj→a(xj) + ck→a(xk)] (20)
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X\xi



Ca(Xa) +
∑
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cj→a(xj)


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X\xi



e−Ca(Xa)
∏
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formulation, we compute the outgoing messages from a variable node at the next iteration using the rule

mi→a(t + 1) = bi(t) − 1/2 [ma→i(t) − mi→a(t)] . (4)

Comparing with the ordinary BP rule

mi→a(t + 1) = bi(t) − ma→i(t), (5)

we note that the message out of a variable node in D&C also depends on the value of the same message at the previous

iteration, which does not happen in BP.

To summarize, the overall structure of BP and D&C as message-passing algorithms is similar. In both one iteratively

updates beliefs at variable nodes and messages between variable nodes and constraint nodes. Furthermore, messages out of

a constraint node are computed based on the messages into the constraint node, beliefs are computed based on the messages

into a variable node, and the messages out of the variable node depend on the beliefs and the messages into a variable node.

The differences are in the specific forms of the message-update and belief-update rules, and the fact that a message-update

rule for a message out of a variable node in D&C also depends on the value of the same message in the previous iteration.

III. D&C DECODER FOR LDPC CODES

Decoding of LDPC codes can be described as a constraint satisfaction problem. We restrict ourselves here to binary

LDPC codes, although generalizations to q-ary codes are straightforward. Searching for a codeword is equivalent to seeking
a binary sequence which satisfies all the single-parity check (SPC) constraints simultaneously. We also add one important

additional constraint, which is that the likelihood of a binary sequence must be greater than some minimum amount. Then

the decoding problem can be divided into many simple sub-problems which can be solved independently using the D&C

approach.

Let M and N be the number of SPC constraints and bits of a binary LDPC code, respectively. Let H be the parity check

matrix which defines the code. Assume BPSK signaling with unit energy, which maps a binary codeword c = (c1, c2, . . . , cN )
into a sequence x = (x1, x2, . . . , xN ), according to xi = 1−2ci, for i = 1, 2, . . . , N . The sequence x is transmitted through
a channel and the received channel observations are denoted y = (y1, y2, . . . , yN). Let the log-likelihood ratios (LLR’s)
corresponding to the received channel observations be L = (L1, L2, . . . , LN ), where

Li = log

(

Pr[yi|xi = 1]

Pr[yi|xi = −1]

)

.

Our goal is to recover the transmitted sequence of variables x. To do this, we will search for a sequence of ±1’s that
satisfies all the SPC constraints and has the highest likelihood, or equivalently, the lowest “energy,” where the energy is

defined as E = −
∑N

i=1 Lixi. Note that although our desired sequence consists only of ±1 variables, the “replica” values,
or equivalently “messages” and “beliefs,” are real-valued.

In all, we have N variables xk, and M + 1 constraints, of which M are SPC constraints, with one additional energy

constraint. We will write the energy constraint as −
∑

i Lixi ≤ Emax, where different choices of Emax result in different

decoders. It is not obvious how to choose Emax; we performed preliminary experiments to search for an Emax that optimizes

decoding performance. Somewhat surprisingly, the best choice for Emax is one that for which the energy constraint can

never actually be satisfied: we found that Emax = −(1 + ε)
∑

i |Li|, with 0 < ε # 1 was an excellent choice. The fact that
the energy constraint is never satisfied is not a problem because the decoder terminates if it finds a codeword that satisfies

all the SPC constraints. Until then, the energy constraint acts effectively to keep the replica values near the transmitted

sequence.

We will describe the D&C decoder as an iterative message-update algorithm on a constraint graph, following the

formulation in section II-C. We use N variable indexes i = 1, 2, · · · , N and M + 1 constraint indexes a = 0, 1, 2, · · · , M ,

where the 0th constraint is the energy constraint. SPC constraints involve a small number of variables, but the energy

constraint involves every variable. To lay the groundwork for the overall D&C decoder, we now explain how to perform the

divide and concur projections.

A. Divide and concur projections for LDPC decoding

The divide projection PD can be partitioned into a collection of M + 1 projections P a
D , where each projection operates

independently on a vector of messages m→a(t) ≡ {mi→a(t) : i ∈ N (a)} and outputs a vector (of the same dimensionality)
of projected messages P a

D(m→a(t)). The output vector is as close as possible to the original values m→a(t) while satisfying
the ath constraint.
The SPC constraints require that the variables involved in a constraint are all ±1, with an even number of −1’s. For these

constraints we efficiently perform the divide projection as follows:

• Make a hard decision hia on each of mi→a(t) such that hia = 1 if mi→a(t) ≥ 0 and hia = −1 otherwise.
• Check if ha contains an even number of −1’s. If it does, set P a

D(m→a(t)) = ha and return.
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            Difference-Map Belief Propagation

Beginning with the message-updates at a check node, the standard min-sum BP update rules are to take incoming messages

mi→a(t) and compute outgoing messages according to the rule that

ma→i(t) =

(

min
j∈N (a)\i

|mj→a(t)|
)

∏

j∈N (a)\i

sgn(mj→a(t)), (9)

where sgn(z) = 1 if z ≥ 0 and −1 else. Comparing with the D&C “overshoot” message-update rule, we note that the

min-sum updates, in some sense, also “overshoot”. For example, at a check node that has three incoming positive messages

and one incoming negative message, we obtain three outgoing negative messages and one outgoing positive message. This

overshoots the “correct” solution of having an even number of negative messages. Because the min-sum rule for messages

outgoing towards a particular variable ignore the incoming message from that variable, all the outgoing messages move

beyond what is necessary (at least in terms of sign) to satisfy the constraint. Since we want an overshoot, we decided to

leave this rule unmodified.

Turning to the belief update rule, the standard BP rule is to compute the belief as the sum of incoming messages (including

the message from the observation), while the D&C rule is that the belief is the average of incoming messages. We decided

to use the compromise rule

bi(t) = Z



Li +
∑

a∈M(i)

ma→i(t)



 (10)

where Z is a parameter chosen by optimizing decoder performance.

Finally, for the message-update rule for messages at the variable nodes, we directly copy the “correction” rule from D&C.

Our intuitive idea is that perhaps standard BP is missing the correction that is important in making DM dynamics repel

away from traps.

To summarize, the DMBP decoder works as follows:

0. Initialization: Set the maximum number of iterations to Tmax and the current iteration to t = 1. Initialize the the
messages out of variable nodes mi→a(t = 1) for all i and a ∈ M(i) to equal Li.

1. Update messages from checks to variables: Given the messages mi→a(t) coming into the constraint node a, compute
the outgoing messages using the min-sum message update rule given in equation (9).

2. Update beliefs: Compute the beliefs at each variable node i using the belief update rule given in equation (10).
3. Check if codeword has been found: Create ĉ = {ĉi} such that ĉi = 1 if bi(t) < 0, ĉi = 0 if bi(t) > 0 and flip a coin

to decide ĉi if bi(t) = 0. If Hĉ = 0 output ĉ as the decoded codeword and stop.

4. Update messages from variables to checks: Increment t := t + 1. If t > Tmax stop and return FAILURE. Otherwise,

update each message out of the variable nodes using the “overshoot correction” rule given in equation (4) and go back

to Step 1.

V. SIMULATION RESULTS

In this section, we compare simulation results of the D&C and DMBP decoders to those of a variety of other decoders.

The decoding algorithms are applied to two kinds of LDPC codes and simulated over both the BSC and the AWGN channel.

One code is a random regular LDPC code with length 1057 and rate 0.77, obtained from [21]. The other code is a array

LDPC code [22][4], a quasi-cyclic (QC) LDPC code with length 2209 and rate 0.916.

The first point of comparison of our proposed decoders is to sum-product BP decoding. When simulating transmission over

the BSC, in order better to probe the error floor region, we implement the multistage decoder introduced in [15]. Multistage

decoders pre-append simpler decoders (in our case Richardson & Urbanke’s Algorithm-E [23] and/or regular sum-product

BP) to the more complex decoders of interest (e.g., D&C). The simpler decoders either decoder or fail to decoder in a

detectable way (e.g., by not converging in BP’s case). Failures to decode trigger the use of the more complex decoders.

In this way one can often achieve the WER performance of the most complex decoder at an expected complexity close to

that of the most simple decoder. Our first use of the multistage approach in this paper is to calculate the performance of

sum-product BP decoding for the BSC. We implement a multistage decoder that combines a first-stage Algorithm-E to a

second-stage sum-product BP. We term the combination E-BP. For the sum-product BP simulations of the AWGN channel

simulations we implement a standard sum-product BP decoder (and not a multistage decoder) as we have found Algorithm-E

has very poor performance on the AWGN channel and thus does not appreciably reduce simulation time.

For D&C and DMBP we provide results for standard (single-stage) implementations of both algorithms as well as for

multi-stage implementations. As per the discussion above, we use E-BP as the initial stages for simulations over the BSC

and BP by itself as a first stage for simulations of the AWGN channel. We denote the resulting multi-stage decoders by

E-BP-DMBP, E-BP-D&C, BP-DMBP and BP-D&C.

Our final points of comparison are to linear programming (LP) decoding and mixed-integer LP (MILP) decoding. For the

BSC, we implement the multistage decoders E-BP-LP and E-BP-MILP(l) for l = 10, where l is the maximum number of

• Otherwise, let ν = argmini |mi→a(t)|. Especially for the BSC, it is possible that several messages have equally minimal
|mi→a(t)|. In this case, we randomly pick one of them and use its index as ν.

• Flip hνa, i.e., if hνa = −1, set it to 1 and if hνa = 1, set it to −1. Then set P a
D(m→a(t)) = ha and return.

Recall that the energy constraint is −
∑N

i=1 xiLi ≤ Emax. This implies a divide projection on the vector of messages

m→0(t), performed as follows:

• If the energy constraint is already satisfied by the messages m→0(t), return the current messages, i.e., P 0
D(m→0(t)) =

m→0(t). (Recall however that the energy constraint will never be satisfied for the choice of Emax = −(1 + ε)
∑

i |Li|
that we use in our simulations.)

• Otherwise, find h0 which is the closest vector to m→0(t) and satisfies the energy constraint. An easy application of
vector calculus can be used to derive that the ith component hi0 is given by the formula

hi0 = mi→0(t) −
Li(

∑

i Limi→0(t) + Emax)
∑

i L2
i

(6)

Set P 0
D(m→0(t)) = h0 and return.

Finally, the concur projection PC can be partitioned into a set of N projection operators P i
C , where each P i

c operates

independently on the vector of messages m→i ≡ {ma→i(t) : a ∈ M(i)} and outputs the belief bi(t), the average over the
components of the vector m→i.

B. D&C algorithm for LDPC decoding

The overall D&C decoder proceeds as follows.

0. Initialization: Set the maximum number of iterations to Tmax and the current iteration to t = 1. Initialize the messages
out of variable nodes mi→a(t = 1) for all i and a ∈ M(i) to equal 2pi − 1, where pi is the a priori probability that

the ith transmitted symbol xi was a 1, given by pi ≡ exp(Li)/(1 + exp(Li)).
1. Update messages from checks to variables: Given the messages m→a(t) ≡ {mi→a(t) : i ∈ N (a)} into each constraint

a, compute the messages out of each constraint ma→(t) ≡ {ma→i(t) : i ∈ N (a)} using the overshoot formula

ma→(t) = m→a(t) + 2[P a
D(m→a(t)) −m→a(t)] (7)

where P a
D(m→a(t)) is the divide projection operation for constraint a.

2. Update beliefs: Compute the beliefs at each variable node i using the concur projections

bi(t) = P i
C(m→i(t)) =

1

|M(i)|
∑

a∈M(i)

ma→i(t). (8)

3. Check if codeword has been found: Create ĉ = {ĉi} such that ĉi = 1 if bi(t) < 0, ĉi = 0 if bi(t) > 0 and flip a coin
to decide ĉi if bi(t) = 0. If Hĉ = 0 output ĉ as the decoded codeword and stop.

4. Update messages from variables to checks: Increment t := t + 1. If t > Tmax stop and return FAILURE. Otherwise,

update each message out of the variable nodes using the “overshoot correction” rule given in equation (4) and go back

to Step 1.

As already mentioned in the introduction, the D&C decoder performs reasonably well, but with some problems. We

defer a detailed discussion of the D&C simulation results until section V. First we describe a second novel decoder, the

difference-map belief propagation (DMBP) decoder, so that we can compare them.

IV. DMBP DECODER

Our motivation in creating the DMBP decoder was that BP decoders generally perform well, but they seem to use

something like an iterated projection strategy, and perhaps the trapping sets that plague the error-floor regime are related

to the “traps” that the difference-map dynamics is supposed to ameliorate. Since we can also describe D&C decoders as

message-passing decoders, we could try to create a new BP decoder that was a mixture of BP and difference-map ideas.

For simplicity, we work with a min-sum BP decoder using messages and beliefs that correspond to log-likelihood ratios.

Note that the min-sum message update rule is much simpler to implement in hardware than the standard sum-product rule.

Normally, sum-product (or some approximation to sum-product) BP decoders are favored over min-sum BP decoders because

they perform better, but we found that the straightforward min-sum DMBP decoder will out-perform the more complicated

sum-product BP decoder. Our preliminary simulations also show, somewhat surprisingly, that the min-sum DMBP decoder

slightly out-performs a sum-product DMBP decoder. (We don’t further discuss the sum-product DMBP decoder herein.)

We use the same notation for messages and beliefs that were used in the discussion of the D&C decoder in Section III. We

compare, on an intuitive level, the min-sum BP decoder with the D&C decoder in terms of belief updates and message-updates

at both the variable and check nodes.
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formulation, we compute the outgoing messages from a variable node at the next iteration using the rule

mi→a(t + 1) = bi(t) − 1/2 [ma→i(t) − mi→a(t)] . (4)

Comparing with the ordinary BP rule

mi→a(t + 1) = bi(t) − ma→i(t), (5)

we note that the message out of a variable node in D&C also depends on the value of the same message at the previous

iteration, which does not happen in BP.

To summarize, the overall structure of BP and D&C as message-passing algorithms is similar. In both one iteratively

updates beliefs at variable nodes and messages between variable nodes and constraint nodes. Furthermore, messages out of

a constraint node are computed based on the messages into the constraint node, beliefs are computed based on the messages

into a variable node, and the messages out of the variable node depend on the beliefs and the messages into a variable node.

The differences are in the specific forms of the message-update and belief-update rules, and the fact that a message-update

rule for a message out of a variable node in D&C also depends on the value of the same message in the previous iteration.

III. D&C DECODER FOR LDPC CODES

Decoding of LDPC codes can be described as a constraint satisfaction problem. We restrict ourselves here to binary

LDPC codes, although generalizations to q-ary codes are straightforward. Searching for a codeword is equivalent to seeking
a binary sequence which satisfies all the single-parity check (SPC) constraints simultaneously. We also add one important

additional constraint, which is that the likelihood of a binary sequence must be greater than some minimum amount. Then

the decoding problem can be divided into many simple sub-problems which can be solved independently using the D&C

approach.

Let M and N be the number of SPC constraints and bits of a binary LDPC code, respectively. Let H be the parity check

matrix which defines the code. Assume BPSK signaling with unit energy, which maps a binary codeword c = (c1, c2, . . . , cN )
into a sequence x = (x1, x2, . . . , xN ), according to xi = 1−2ci, for i = 1, 2, . . . , N . The sequence x is transmitted through
a channel and the received channel observations are denoted y = (y1, y2, . . . , yN). Let the log-likelihood ratios (LLR’s)
corresponding to the received channel observations be L = (L1, L2, . . . , LN ), where

Li = log

(

Pr[yi|xi = 1]

Pr[yi|xi = −1]

)

.

Our goal is to recover the transmitted sequence of variables x. To do this, we will search for a sequence of ±1’s that
satisfies all the SPC constraints and has the highest likelihood, or equivalently, the lowest “energy,” where the energy is

defined as E = −
∑N

i=1 Lixi. Note that although our desired sequence consists only of ±1 variables, the “replica” values,
or equivalently “messages” and “beliefs,” are real-valued.

In all, we have N variables xk, and M + 1 constraints, of which M are SPC constraints, with one additional energy

constraint. We will write the energy constraint as −
∑

i Lixi ≤ Emax, where different choices of Emax result in different

decoders. It is not obvious how to choose Emax; we performed preliminary experiments to search for an Emax that optimizes

decoding performance. Somewhat surprisingly, the best choice for Emax is one that for which the energy constraint can

never actually be satisfied: we found that Emax = −(1 + ε)
∑

i |Li|, with 0 < ε # 1 was an excellent choice. The fact that
the energy constraint is never satisfied is not a problem because the decoder terminates if it finds a codeword that satisfies

all the SPC constraints. Until then, the energy constraint acts effectively to keep the replica values near the transmitted

sequence.

We will describe the D&C decoder as an iterative message-update algorithm on a constraint graph, following the

formulation in section II-C. We use N variable indexes i = 1, 2, · · · , N and M + 1 constraint indexes a = 0, 1, 2, · · · , M ,

where the 0th constraint is the energy constraint. SPC constraints involve a small number of variables, but the energy

constraint involves every variable. To lay the groundwork for the overall D&C decoder, we now explain how to perform the

divide and concur projections.

A. Divide and concur projections for LDPC decoding

The divide projection PD can be partitioned into a collection of M + 1 projections P a
D , where each projection operates

independently on a vector of messages m→a(t) ≡ {mi→a(t) : i ∈ N (a)} and outputs a vector (of the same dimensionality)
of projected messages P a

D(m→a(t)). The output vector is as close as possible to the original values m→a(t) while satisfying
the ath constraint.
The SPC constraints require that the variables involved in a constraint are all ±1, with an even number of −1’s. For these

constraints we efficiently perform the divide projection as follows:

• Make a hard decision hia on each of mi→a(t) such that hia = 1 if mi→a(t) ≥ 0 and hia = −1 otherwise.
• Check if ha contains an even number of −1’s. If it does, set P a

D(m→a(t)) = ha and return.
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Comments and Justifications

• Min-sum rule already overshoots in some sense
– If there are three one’s and a zero attached to a check, every bit will flip

• Wasn’t clear whether BP’s “belief is a sum” or D&C’s “belief is an 
average” rule made more sense, so we compromise.

• Use D&C overshoot-correction rule.

• We also tried a sum-product version of DMBP, but it actually 
performed worse than the min-sum version! 
– This is surprising, because sum-product BP usually performs better than min-sum BP, 

and min-sum BP would otherwise be preferred because it is simpler to implement. 
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• Review of factor graphs for optimization and inference, and the 
min-sum Belief Propagation (BP) algorithm

• Gravel and Elser’s “Divide & Concur” algorithm interpreted as a 
message-passing algorithm

• Decoders for Low-Density Parity Check (LDPC) Codes
– Divide & Concur Decoder
– “Difference-Map Belief Propagation” (DMBP) Decoder

• Simulation Results
– DMBP Decoder significantly improves error-floor performance 

compared with standard BP decoders, with similar complexity!
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E!BP
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Fig. 1. Structure of an E-BP-MILP decoder.

goal is for the multi-stage decoder to perform as well as a

powerful but slow MILP decoder with an average throughput

approaching that of the fast algorithm E decoder.

We will want to discuss the incremental decoding perfor-

mance of a subset of the decoding stages. Thus, we refer to

the combination of the Algorithm E and BP decoders as an

E-BP decoder and to the full decoder, i.e., the combination

of E-BP with MILP, as an E-BP-MILP decoder. Further, we

denote an E-BP-MILP decoder using a maximum of t binary

constraints as a E-BP-MILP(t) decoder. If t = 0, we refer to

the full decoder as an E-BP-LP decoder, because in that case

the MILP decoder is actually equivalent to an LP decoder.

We note that in our discussion “decoding failure” indicates

that the specified algorithm fails to output a valid codeword.

For example, the BP algorithm may fail to converge, or the

LP decoder may yield a pseudo-codeword. If the algorithm

outputs a valid, but incorrect codeword, this is a decoder

“success”, and does not trigger the use of the next stage.

Of course, decoding “successes” that do not agree with the

transmitted codeword contribute to the word error rate (WER).

A simple analysis can be used to approximate the average

throughput of any multi-stage decoder. If we assume that a

given decoder takes a processing time of T per block, has a

word error rate of WER, and that nearly all errors are decoding

failures, then a multi-stage E-BP-MILP decoder will have an

approximate average processing time per block of

TE

(

1 + WERE
TBP

TE
+ WERE−BP

TMILP

TE

)

. (1)

Thus, so long as WERE ! TE/TBP and WERE−BP !
TE/TMILP, the average throughput will be approximately the

same as that of Algorithm E, even while the performance is

at least as good as the MILP decoder.

III. DECODING ALGORITHMS

In the following subsections we discuss the details of each

algorithm in turn. In Section III-A we present background

on Algorithm E. In Section III-B we describe our accelerated

Algorithm E. In Section III-C we briefly discuss LP and MILP

decoding (a detailed discussion can be found in [8]). Since the

sum-product BP algorithm we use is completely standard, we

do not devote space to a discussion of it.

We use the following notation. Consider a binary length-

N linear code C. A codeword c ∈ C is transmitted over a

BSC and the destination observes y, where we assume binary

phase shift keying wherein each 0 symbol maps to 1 and each

1 symbol maps to −1 so yn ∈ {−1, 1}. Let H = [Hmn]
be the M by N parity check matrix of an LDPC code. We

denote the set of variable nodes that participate in check j
by N (j) = {k : Hjk = 1} and the set of checks in which

variable k participates as Q(k) = {j : Hjk = 1}. We also

denote using N (j)\k the set N (j) with codeword symbol k
excluded, and Q(k)\j the set Q(k) with check j excluded.

A. Algorithm E

Algorithm E was proposed and analyzed in [12], [13]. It

quantizes BP messages into −1, 0, or +1 values. Messages

and beliefs associated with the ith iteration are denoted as

• u(i)
mn: message from check node m to variable node n

• v(i)
mn: message from variable node n to check node m

• v(i)
n : belief of variable node n

For the BSC Algorithm E is carried out as [12, pp. 606-607]:

Initialization: Set i = 1 and the maximum number of

iteration to Imax. For each m, n, set v(0)
mn = yn.

Step 1: For 1 ≤ m ≤ M and each n ∈ N (m), process

u(i)
mn =

∏

n′∈N (m)\n

v(i−1)
mn′ .

Step 2: For 1 ≤ n ≤ N and each m ∈ Q(n), process

v(i)
mn = sgn



w(i) · yn +
∑

m′∈Q(n)\m

u(i)
m′n



 ,

where sgn(x) = −1 if x < 0, sgn(x) = 0 if x = 0, and

sgn(x) = 1 if x > 0, and where w(i) is a weight chosen to

optimize performance. For example, in [12], the authors

show that w(1) = 2 and w(i) = 1 for i ≥ 2 optimize the

decoding threshold for a regular (3, 6) LDPC code.

v(i)
n = sgn



w(i) · yn +
∑

m′∈Q(n)

u(i)
m′n



 .

Step 3: Create ĉ
(i) = [ĉ(i)

n ] such that ĉ(i)
n = 1 if v(i)

n < 0,

ĉ(i)
n = 0 if v(i)

n > 0 and flip a coin to decide ĉ(i)
n if v(i)

n =
0. If Hĉ

(i) = 0 or i = Imax, stop the decoding iteration

and output ĉ
(i)

as the decoded codeword. Otherwise, set

i := i + 1 and return to Step 1.

B. Active-set Algorithm E

In a standard implementation of Algorithm E, all messages

from check nodes and variable nodes are updated at each

iteration. Updating is not needed by the nodes for which the

incoming messages have not changed since the last iteration. In

fact, at low crossover probabilities, most messages never need

to be updated during decoding because the channel only flips

a few symbols. Algorithmic complexity can thus be reduced

significantly by updating messages only when necessary.

In simulations wherein one can assume that the same

codeword (normally the all-zeroes codeword) is transmitted for

each block, there is an important additional speed-up possible

at initialization. Whenever a block is decoded successfully, the

See Y. Wang, J.S. Yedidia, S.C. Draper, ISIT 2009
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Fig. 3. Error performance comparisons for a length-1057, rate-0.77 random LDPC code over the BSC.

integer (in fact binary) constraints the MILP decoder is allowed. Further details of these decoders and results can be found

in [15].

Regarding the decoding parameters of our new algorithms, for the random LDPC code, we use Z = 0.35 for the DMBP
decoder over both BSC and the AWGN channel. For the array code, we use Z = 0.405 over the BSC and Z = 0.445 over
the AWGN channel.

Finally, we are often able to estimate a lower bound on the word error rate (WER) of ML decoding. When our decoders

return a codeword that is different from the transmitted codeword, but has a higher probability, we know that an optimal

ML decoder would also have made a decoding “error.” The proportion of such events provides an estimated lower bound on

ML performance. (True ML performance could be worse than the lower bound because an ML decoder may also sometimes

have errors on blocks for which our decoders fail to converge.)

Figure 3 plots the word error rates of the various algorithms for the length-1057 random LDPC code when transmitted

over the BSC. We plot WER versus SNR, assuming that the BSC results from hard-decision demodulation of a BPSK ±1
sequence transmitted over an AWGN channel. The resulting relation between the crossover probability p of the equivalent

BSC-p and the SNR of the AWGN channel is p = Q
(√

2R · 10SNR/10
)

, where R is the rate of the code and Q(·) is the
Q-function. In Figure 3(a) we plot results when all iterative algorithms are limited to Tmax = 50 iterations, and in Figure 3(b)
to Tmax = 300 iterations. We observe that E-BP-DMBP improves the error floor performance dramatically compared with
E-BP (E-BP-D&C also improves significantly compared with E-BP if one allows for 300 iterations) and in the high SNR

region E-BP-DMBP with 50 iterations is very close to the estimated lower bound of the maximum likelihood (ML) decoder.

Note also that a pure DMBP decoder has almost the same performance as E-BP-DMBP for both 50 and 300 iterations, so

the E-BP-DMBP performance in the very high SNR regime should be indicative of the pure DMBP performance.

From Figure 3, we also observe that the pure D&C decoder needs many more iterations to obtain good performance

compared with both BP and DMBP. For 300 iterations, D&C performs better than E-BP at lower SNR, but exhibits an

apparent error floor as the SNR increases. This high error floor is mostly the result of the D&C decoder returning a

codeword with lower probability than the transmitted codeword. For example, for an SNR of 6.60 dB, 70% of D&C errors

are of this type, while for an SNR of 7.31 dB, the percentage rises to 96%. In contrast, the BP and DMBP decoders

essentially never make this kind of error.

Notice that E-BP-LP has a very similar performance to DMBP, and also that E-BP-MILP with 10 fixed bits performs the

best among all the decoders and almost approaches the estimated ML lower bound. However, DMBP decoders should be sig-

nificantly more practical to construct in hardware, because they are message-passing decoders similar to existing BP decoders,

while LP and MILP decoders do not currently have efficient and hardware-friendly message-passing implementations.

Figure 4 depicts the WER performance comparison of the length-2209 array LDPC code over the BSC. For this QC-LDPC

code, we observe broadly similar performance to the random LDPC code.

Figure 5 shows the WER performance comparison of the length-1057 random LDPC code over the AWGN channel. We

observe that the BP decoder for this code exhibits an error floor. In Figure 5(b) both DMBP and D&C with 200 iterations

are seen to improve the error floor performance compared with BP and they do not have an apparent error floor. The D&C

decoder still converges slower than both BP and DMBP and its performance with 500 iterations has obvious improvement

over 200 iterations and especially 50 iterations. In the high SNR region, the D&C decoder does not converge to an incorrect

Length=1057, rate=0.77, random LDPC over BSC
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Fig. 3. Error performance comparisons for a length-1057, rate-0.77 random LDPC code over the BSC.

integer (in fact binary) constraints the MILP decoder is allowed. Further details of these decoders and results can be found

in [15].

Regarding the decoding parameters of our new algorithms, for the random LDPC code, we use Z = 0.35 for the DMBP
decoder over both BSC and the AWGN channel. For the array code, we use Z = 0.405 over the BSC and Z = 0.445 over
the AWGN channel.

Finally, we are often able to estimate a lower bound on the word error rate (WER) of ML decoding. When our decoders

return a codeword that is different from the transmitted codeword, but has a higher probability, we know that an optimal

ML decoder would also have made a decoding “error.” The proportion of such events provides an estimated lower bound on

ML performance. (True ML performance could be worse than the lower bound because an ML decoder may also sometimes

have errors on blocks for which our decoders fail to converge.)

Figure 3 plots the word error rates of the various algorithms for the length-1057 random LDPC code when transmitted

over the BSC. We plot WER versus SNR, assuming that the BSC results from hard-decision demodulation of a BPSK ±1
sequence transmitted over an AWGN channel. The resulting relation between the crossover probability p of the equivalent

BSC-p and the SNR of the AWGN channel is p = Q
(√

2R · 10SNR/10
)

, where R is the rate of the code and Q(·) is the
Q-function. In Figure 3(a) we plot results when all iterative algorithms are limited to Tmax = 50 iterations, and in Figure 3(b)
to Tmax = 300 iterations. We observe that E-BP-DMBP improves the error floor performance dramatically compared with
E-BP (E-BP-D&C also improves significantly compared with E-BP if one allows for 300 iterations) and in the high SNR

region E-BP-DMBP with 50 iterations is very close to the estimated lower bound of the maximum likelihood (ML) decoder.

Note also that a pure DMBP decoder has almost the same performance as E-BP-DMBP for both 50 and 300 iterations, so

the E-BP-DMBP performance in the very high SNR regime should be indicative of the pure DMBP performance.

From Figure 3, we also observe that the pure D&C decoder needs many more iterations to obtain good performance

compared with both BP and DMBP. For 300 iterations, D&C performs better than E-BP at lower SNR, but exhibits an

apparent error floor as the SNR increases. This high error floor is mostly the result of the D&C decoder returning a

codeword with lower probability than the transmitted codeword. For example, for an SNR of 6.60 dB, 70% of D&C errors

are of this type, while for an SNR of 7.31 dB, the percentage rises to 96%. In contrast, the BP and DMBP decoders

essentially never make this kind of error.

Notice that E-BP-LP has a very similar performance to DMBP, and also that E-BP-MILP with 10 fixed bits performs the

best among all the decoders and almost approaches the estimated ML lower bound. However, DMBP decoders should be sig-

nificantly more practical to construct in hardware, because they are message-passing decoders similar to existing BP decoders,

while LP and MILP decoders do not currently have efficient and hardware-friendly message-passing implementations.

Figure 4 depicts the WER performance comparison of the length-2209 array LDPC code over the BSC. For this QC-LDPC

code, we observe broadly similar performance to the random LDPC code.

Figure 5 shows the WER performance comparison of the length-1057 random LDPC code over the AWGN channel. We

observe that the BP decoder for this code exhibits an error floor. In Figure 5(b) both DMBP and D&C with 200 iterations

are seen to improve the error floor performance compared with BP and they do not have an apparent error floor. The D&C

decoder still converges slower than both BP and DMBP and its performance with 500 iterations has obvious improvement

over 200 iterations and especially 50 iterations. In the high SNR region, the D&C decoder does not converge to an incorrect

Length=1057, rate=0.77, random LDPC over BSC



         MITSUBISHI ELECTRIC RESEARCH LABORATORIES

MITSUBISHI
ELECTRIC

Changes for the better

6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8
10

!9

10
!8

10
!7

10
!6

10
!5

10
!4

10
!3

10
!2

10
!1

10
0

Eb/N0 (dB)

W
E

R

 

 

D&C

E!BP

E!BP!D&C

DMBP

E!BP!LP

E!BP!DMBP

E!BP!MILP(10)

ML est. lower bound

(a) Results when Tmax = 50 iterations

6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8
10

!9

10
!8

10
!7

10
!6

10
!5

10
!4

10
!3

10
!2

10
!1

10
0

Eb/N0 (dB)

W
E

R

 

 

D&C

E!BP

E!BP!D&C

DMBP

E!BP!LP

E!BP!DMBP

E!BP!MILP(10)

ML est. lower bound

(b) Results when Tmax = 300 iterations

Fig. 4. Error performance comparisons for a length-2209, rate-0.916 array LDPC code over the BSC.
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Fig. 5. Error performance comparisons for a length-1057, rate-0.77 random LDPC code over the AWGN channel.

codeword as frequently as over the BSC. Note also that on the AWGN channel, while the DMBP decoder outperforms BP

in the error-floor regime, it actually starts out worse in the waterfall regime.

Figure 6 depicts the WER performance comparison of the length-2209 array LDPC code over the AWGN channel. For

this QC-LDPC code, we observe similar performance to the random LDPC code.

Our basic motivation for the D&C and DMBP decoders was that the difference-map dynamics may help a decoder

avoid dynamical “traps” that could be related to the trapping sets that are believed to cause error floors. The very good

performance of these decoders in the error floor regime, particularly the DMBP decoder, indicates that something like this

may be occurring. A more careful analysis will be useful. We have performed some preliminary investigations of individual

“absorbing sets” in the array code that we simulated [4], and found that although the DMBP decoder performed better on

average, it still would not escape if started near some difficult absorbing sets.

VI. CONCLUSION

In this paper, we propose two decoders for LDPC codes. The D&C decoder applies the divide and concur approach to

decoding LDPC codes. The DMBP algorithm imports the difference-map idea in the D&C approach into a min-sum BP-type

decoder. The DMBP decoder shows particularly promising improvements in error-floor performance compared with standard

sum-product BP decoders and with comparable computational complexity.

Length=1057, rate=0.77, random LDPC over AWGNC
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Fig. 5. Error performance comparisons for a length-1057, rate-0.77 random LDPC code over the AWGN channel.

codeword as frequently as over the BSC. Note also that on the AWGN channel, while the DMBP decoder outperforms BP

in the error-floor regime, it actually starts out worse in the waterfall regime.

Figure 6 depicts the WER performance comparison of the length-2209 array LDPC code over the AWGN channel. For

this QC-LDPC code, we observe similar performance to the random LDPC code.

Our basic motivation for the D&C and DMBP decoders was that the difference-map dynamics may help a decoder

avoid dynamical “traps” that could be related to the trapping sets that are believed to cause error floors. The very good

performance of these decoders in the error floor regime, particularly the DMBP decoder, indicates that something like this

may be occurring. A more careful analysis will be useful. We have performed some preliminary investigations of individual

“absorbing sets” in the array code that we simulated [4], and found that although the DMBP decoder performed better on

average, it still would not escape if started near some difficult absorbing sets.

VI. CONCLUSION

In this paper, we propose two decoders for LDPC codes. The D&C decoder applies the divide and concur approach to

decoding LDPC codes. The DMBP algorithm imports the difference-map idea in the D&C approach into a min-sum BP-type

decoder. The DMBP decoder shows particularly promising improvements in error-floor performance compared with standard

sum-product BP decoders and with comparable computational complexity.

Length=1057, rate=0.77, random LDPC over AWGNC
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codeword as frequently as over the BSC. Note also that on the AWGN channel, while the DMBP decoder outperforms BP

in the error-floor regime, it actually starts out worse in the waterfall regime.

Figure 6 depicts the WER performance comparison of the length-2209 array LDPC code over the AWGN channel. For

this QC-LDPC code, we observe similar performance to the random LDPC code.

Our basic motivation for the D&C and DMBP decoders was that the difference-map dynamics may help a decoder

avoid dynamical “traps” that could be related to the trapping sets that are believed to cause error floors. The very good

performance of these decoders in the error floor regime, particularly the DMBP decoder, indicates that something like this

may be occurring. A more careful analysis will be useful. We have performed some preliminary investigations of individual

“absorbing sets” in the array code that we simulated [4], and found that although the DMBP decoder performed better on

average, it still would not escape if started near some difficult absorbing sets.

VI. CONCLUSION

In this paper, we propose two decoders for LDPC codes. The D&C decoder applies the divide and concur approach to

decoding LDPC codes. The DMBP algorithm imports the difference-map idea in the D&C approach into a min-sum BP-type

decoder. The DMBP decoder shows particularly promising improvements in error-floor performance compared with standard

sum-product BP decoders and with comparable computational complexity.

Length=2209, rate=0.916, Array LDPC over BSC
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Summary


• Gravel and Elser’s Divide & Concur algorithm is an interesting 
competitor to Belief Propagation, that can handle a very wide 
variety of problems, including problems with continuous variables 
and with no local evidence. The difference-map dynamics of D&C 
lets it avoid local “traps.”

• Divide & Concur can be usefully re-formulated as a message-passing 
algorithm.

• Divide & Concur decoders of LDPC codes are not very 
impressive, but simulations show that importing the difference-map 
idea into a min-sum BP decoder results in a significantly improved 
decoder compared to the standard sum-product BP decoder, with 
similar complexity.


